1. Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018; 15(7): 387-407.
2. Tao L, Bei Y, Lin S, et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cell Physiol Biochem. 2015; 37(1): 162-175.
3. Mishra PK, Adameova A, Hill JA, et al. Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol. 2019;317(5):H891-H922.
4. Teringova E, Tousek P. Apoptosis in ischemic heart disease. J Transl Med. 2017;15(1):87.
5. Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer 2018; 18(12): 744-757.
6. Wang X, Xie J, Proud CG. Eukaryotic elongation factor 2 kinase (eEF2K) in cancer. Cancers 2017; 9(12): 162.
7. Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Bio. 2018; 19(2): 121-135.
8. Chan AY, Soltys CL, Young ME, et al. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J Biol Chem. 2004; 279(31): 32771- 32779.
9. Schoenfeld BJ, Grgic J, Van Every DW, et al. Loading recommendations for muscle strength, hypertrophy, and local endurance: A re-examination of the repetition continuum. Sports. 2021; 9(2): 32.
10. Konopka AR, Harber MP. Skeletal muscle hypertrophy after aerobic exercise training. Exerc Sport Sci Rev. 2014; 42(2): 53-61.
11. Donniacuo M, Urbanek K, Nebbioso A, et al. Cardioprotective effect of a moderate and prolonged exercise training involves sirtuin pathway. Life Sci. 2019; 222: 140-147.
12. Ko IG, Kim SE, Kim CJ, et al. Treadmill exercise alleviates aging-induced apoptosis in rat cardiac myocytes. Int J Gerontol. 2013; 7(3): 152-157.
13. Pei Z, Yang C, Guo Y, et al. Effect of different exercise training intensities on age-related cardiac damage in male mice. Aging. 2021; 13(17): 21700-21711.
14. Krüger K, Mooren FC. Exercise-induced leukocyte apoptosis. Exerc Immunol Rev 2014; 20: 117-134.
15. Lu K, Wang L, Wang C, et al. Effects of high-intensity interval versus continuous moderate-intensity aerobic exercise on apoptosis, oxidative stress and metabolism of the infarcted myocardium in a rat model. Mol Med Rep. 2015; 12(2): 2374-2382.
16. Wisløff U, Helgerud J, Kemi OJ, et al. Intensity-controlled treadmill running in rats: V̇ o 2 max and cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2001;280(3):H1301-10.
17. Kemi OJ, Haram PM, Loennechen JP, et al. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res. 2005; 67(1): 161-172.
18. Gyongyosi A, Zilinyi R, Czegledi A, et al. The role of autophagy and death pathways in dose-dependent isoproterenol-induced cardiotoxicity. Curr Pharm Design. 2019; 25(19): 2192-2198.
19. Dreyer HC, Fujita S, Cadenas JG, et al. Resistance exercise increases AMPK activity and reduces 4E‐BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol. 2006; 576(2): 613-624.
20. Leprivier G, Remke M, Rotblat B, et al. The eEF2 kinase confers resistance to nutrient deprivation by blocking translation elongation. Cell. 2013; 153(5): 1064-1079.
21. Kumar EA, Giles D, Dalby K. AMPK can stimulate EEF2 phosphorylation without regulating its cognate kinase EEF2K. FASEB J. 2020; 34(S1): 1-1.
22. Hodson N, West DW, Philp A, et al. Molecular regulation of human skeletal muscle protein synthesis in response to exercise and nutrients: A compass for overcoming age-related anabolic resistance. Am J Physiol Cell Physiol. 2019; 317(6):C1061-C1078.
23. Yamada S, Kamata T, Nawa H, et al. AMPK activation, eEF2 inactivation, and reduced protein synthesis in the cerebral cortex of hibernating chipmunks. Sci Rep. 2019; 9(1):11904.
24. Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007; 37(9): 737-763.
25. Zhuo XZ, Wu Y, Ni YJ, et al. Isoproterenol instigates cardiomyocyte apoptosis and heart failure via AMPK inactivation-mediated endoplasmic reticulum stress. Apoptosis. 2013; 18(7): 800-810.
26. Marino G, Niso-Santano M, Baehrecke EH, et al. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014; 15(2): 81-94.
27. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014; 20(3):460-473.
28. Sudhakar SR, Varghese J. Insulin signalling activates multiple feedback loops to elicit hunger-induced feeding in Drosophila. Dev Biol. 2020;459(2):87-99.
29. Xie J, Wang Y, Ai D, et al. The role of the Hippo pathway in heart disease. FEBS J 2021.
30. Gan W, Dai X, Dai X, et al. LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nat Cell Biol. 2020; 22(2): 246-56.
31. Gholipour M, Tabrizi A. The role of Hippo signaling pathway in physiological cardiac hypertrophy. BioImpacts. 2020; 10(4): 251-257.